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A ®nite group was discovered that includes all the types of Bravais lattice as its

subgroups. It is based on a new representation of af®ne transformation of a

primitive cell. Its elements are represented by 6 � 6 matrices whose components

are complex in general. The order of the group is 2799360.

1. Introduction

Like other entities in crystallography, each type of Bravais

lattice has its corresponding group (Burckhardt, 1966;

Schwarzenberger, 1972, 1974; NeubuÈ ser et al., 1971;

Wondratschek et al., 1971; BuÈ low et al., 1971; Hosoya, 1979).

The well known 14 types are connected to each other by

group±subgroup relations as shown in Fig. 1 (Hosoya, 1979).

Since all the 14 types are also connected to a supergroup, they

can be regarded as the result of symmetry breakdown, which is

brought about by the occurrence of certain irreducible

representations in the supergroup. Such a consideration

tempts us to apply a phenomenological theory like Landau's

(Landau & Lifshitz, 1962; Aizu, 1962, 1966, 1970; Hosoya,

1977) to all the phase transitions that accompany a change of

Bravais-lattice type. However, the supergroup is in®nite,

which often makes our attempts impossible. For example, the

phase transitions of solid iron cannot be treated by the Landau

theory because it needs a ®nite supergroup of body-centered

cubic (b.c.c.) and face-centered cubic (f.c.c.). If we ®nd a ®nite

supergroup that keeps the interrelations among its subgroups,

the above plan becomes feasible. The present paper gives such

a ®nite supergroup.

2. Generators of affine mapping

A Bravais lattice is algebraically de®ned as a group of af®ne

mappings, each of which maps its lattice onto itself and can

also be realized by a point symmetry operation (Burckhardt,

1966; Schwarzenberger, 1972, 1974). For example, when

the primitive cell vectors are given as a � �x; 0; 0�,
b � �x=2; 31=2x=2; 0�, c � �0; 0; z�, where x and z are arbitrary,

the sixfold rotation about the c axis to �a0; b0; c0� is represented

by the following af®ne mapping:
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On the other hand, it can also be realized by each point

operation of a, b and c such as
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If we decompose the set of basis �a; b; c� into a nine-dimen-

sional vector �ax; ay; az; bx; by; bz; cx; cy; cz� and consider each

component of the matrix of af®ne transformation as a 3 � 3

matrix, we can show the above relation explicitly as follows:
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In general, we may describe such relations symbolically as
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where A and O are the af®ne and the orthogonal (rotational)

transformation, respectively. The group of a Bravais lattice is a

set of left-hand operations that satisfy equation (4). Such an

af®ne operation is represented by a 3 � 3 integral unimodular

matrix (Burckhardt, 1966; NeubuÈ ser et al., 1971). The types of

two Bravais lattice are distinguished according to whether

they are inner automorphic to each other in the group of all

the integral unimodular matrices (Hosoya, 1979). Since the

right-hand operations of equation (4) constitute one of the

crystal point groups, the group of the Bravais lattice is

isomorphic to it.

In order to identify the 14 Bravais types, only the following

generators are needed.
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Here their labels are named from Jones's faithful repre-

sentation symbols for their corresponding symmetry opera-

tions of the point group (Bradley & Cracknell, 1972). The

additional superscripts b and f indicate a body-centered cell

and a face-centered one, respectively. The geometrical

meaning of C2b, C31�, C4z�, C6� and I may be easily obtained,

since each of them shows a literal operation when �a; b; c�
represents a unit cell of a simple cubic or hexagonal lattice.

The meaning of bC4z�, f C4z� and bC31� becomes clear if we

take their conventional-cell vectors �i; j; k� as

i � b� c; j � c� a; k � a� b; �6�
i � ÿa� b� c; j � aÿ b� c; k � a� bÿ c; �7�

i � c; j � aÿ b; k � a� bÿ c; �8�
respectively. The labels have an appropriate meaning with

respect to the transformation of �i; j; k�. For example, bC4z�

corresponds to a fourfold rotation

about the k axis in (6), where �i; j; k�
represents a set of conventional-cell

vectors of a body-centered lattice.

Among the 14 Bravais types, the

hexagonal group and the three cubic

ones have the highest symmetry and

contain all the other groups as their

subgroup. Then we might have only to

®nd a minimal supergroup of these

four groups. However, there is a special situation as to the

cubic groups. No pair of body-centered cubic group and face-

centered cubic group share a rhombohedral group and a body-

centered tetragonal group at the same time. (See Fig. 2.) In

Fig. 1, face-centered cubic and body-centered cubic groups

seem to have rhombohedral and body-centered tetragonal

groups simultaneously. However, every entry in the ®gure

represents all the equivalent groups, and not a particular one.

Hence, face-centered cubic and body-centered cubic groups

should not be regarded as two particular groups but repre-

sentative of all the corresponding equivalent groups. For the

supergroup to constitute a complete system, it must not only

contain all the subgroups but deduce the same group±

subgroup relations among them. Accordingly, we must

prepare at least two types of b.c.c. or f.c.c. as our foothold. We

choose the most convenient set of groups as in Table 1, where

Gsc, Gbcc1 and Gfcc include the rhombohedral group with order

12 generated by �C2b;C31�; I� in common, while Gbcc2 and Gfcc

share the body-centered tetragonal group with order 16

generated by �C2b;
fC4z�; I�.

Table 1
Groups corresponding to Bravais lattices with the highest symmetry.

Group Lattice basis Generators Order

Simple cubic Gsc �x1; 0; 0; 0; x1; 0; 0; 0; x1� �C2b;C31�;C4z�; I� 48
Body-centered cubic Gbcc1 �ÿx2; x2; x2; x2;ÿx2; x2; x2; x2;ÿx2� �C2b;C31�;

bC4z�; I� 48
Body-centered cubic Gbcc2 �x3; x3; x3; x3;ÿx3; x3; 2x3; 0; 0� �C2b;

bC31�;
f C4z�; I� 48

Face-centered cubic Gfcc �0; x4; x4; x4; 0; x4; x4; x4; 0� �C2b;C31�;
f C4z�; I� 48

Hexagonal Ghex �x5; 0; 0; x5=2; 31=2x5=2; 0; 0; 0; x6� �C2b;C6�; I� 24

Figure 1
Hierarchy of the 14 Bravais lattices.



3. A new representation

Now we try to change the operators to make their set close

within a ®nite order. After the change, the relations between

the elements must be kept for the same group±subgroup

relations to hold between the 14 Bravais types. We must ®rst

choose another representation of their elements. In a previous

paper, the author gave a simple method to de®ne the mapping

of a lattice onto itself (Hosoya, 1979). It uses a `primitive

tetrahedron', which has its four corners at some lattice points

and contains none within it. The tetrahedron is speci®ed by a

six-dimensional vector �a; b; c; p; q; r� whose elements are the

length of its six edges. They are easily given from a set of

independent primitive translation vectors a; b; c as follows:

a � jaj; b � jbj; c � jcj;
p � jbÿ cj; q � jcÿ aj; r � jaÿ bj: �9�

[The present de®nition is different from that of Hosoya

(1979).] This de®nition, however, gives only positive values to

all the components and therefore cannot distinguish a primi-

tive cell �a; b; c� from its inverted one �ÿa;ÿb;ÿc�. In

general, we cannot discriminate a cell from its enantiomorph

in terms of the present representation. Accordingly, any

symmetry operation that transforms a cell into its enantio-

morphic one also reduces into the corresponding proper

operation. For example, both inversion and re¯ection become

the identity operation, while an improper rotation like S3

becomes a proper rotation such as C3. The order of every

group in Fig. 1 becomes half as much as the original one.

However, this is not a fatal fault, for any Bravais lattice has an

inversion symmetry by nature and its essential six parameters

can be determined only by proper operations.

Using these relations, the generators of equation (5) can be

translated into those that transform a vector �a; b; c; p; q; r� as

follows. (Hereafter, we represent each vector as a row to save

space.)

C2b�a; b; c; p; q; r� � �b; a; c; q; p; r� �10�
C31��a; b; c; p; q; r� � �c; a; b; r; p; q� �11�
C4z��a; b; c; p; q; r� � �b; a; c; q; f2�b2 � c2� ÿ p2g1=2;

f2�a2 � b2� ÿ r2g1=2� �12�
bC4z��a; b; c; p; q; r� � �f3�a2 � b2 � c2� ÿ p2 ÿ q2 ÿ r2g1=2; c; a; q;

f4�2a2 � b2 � c2� ÿ p2 ÿ 2q2 ÿ 2r2g1=2;

f4�a2 � b2 � 2c2� ÿ 2p2 ÿ 2q2 ÿ r2g1=2� �13�
f C4z��a; b; c; p; q; r� � �b; p; r; q; a; c� �14�
bC31��a; b; c; p; q; r� � �a; q; �a2 � b2 ÿ c2 � p2 � q2 ÿ r2�1=2; b; p; c�

�15�
C6��a; b; c; p; q; r� � �r; a; c; q; �b2 � c2 ÿ a2 � q2 � r2 ÿ p2�1=2; b�

�16�
I�a; b; c; p; q; r� � �a; b; c; p; q; r�: �17�

A great advantage of this representation exists in that the

corresponding equation to (4) is simpli®ed as follows:

A�a; b; c; p; q; r� � �a; b; c; p; q; r�: �18�

Thus, a group of Bravais lattices corresponds to that of af®ne

transformations that keep the primitive tetrahedron invariant.

4. Linearization of generators

Since the above generators contain nonlinear transformations,

they cannot be represented by a matrix in general. Let us

change the nonlinear operators C4z�, bC4z�, bC31� and C6�
into lC4z�, lbC4z�, lbC31� and lC6�, respectively, where the

superscripts l mean `linearized'.

lC4z��a; b; c; p; q; r� � �b; a; c;ÿq; p;ÿr� �19�
lbC4z��a; b; c; p; q; r� � �ÿb; a;ÿc; q; p; r� �20�
lbC31��a; b; c; p; q; r� � �a; q; c exp�i2�=3�; b; p; r exp�ÿi2�=3��

�21�
lC6��a; b; c; p; q; r� � �r; a; c; p exp�i�=3�; q exp�ÿi�=3�; b�:

�22�
Operators lC4z� and lbC4z� were straightforwardly found

because they have a cycle with order 4. lbC31� and lC6� were

also directly suggested by the fact that they are cyclic with

order 3 and 6 in the space �c; r� and �p; q�, respectively. These

operators are, of cource, not unique, but may have a number

of equivalents. However, they have been deliberately chosen

after several trials so that new ®gures such as exp�i�=3� or

exp�i2�=3� should be as few as possible, since they inevitably

generate new elements that increase the order of the minimal

supergroup. For example, lC4z� is de®ned without using

exp�i2�=4�.
Then we choose the bases and the generators of the alter-

nate ®ve groups as in Table 2. It should be noticed that no
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linearization is necessary for the face-centered cubic Gfcc.

Each of these groups has the same structure as its original one.

5. Results

Now all the generators can be represented by 6 � 6 matrices.

Every generator is a monomial matrix, which is de®ned as one

having nonzero components once and only once in each row

and column, and any product of such matrices becomes also

a monomial one. So every matrix of the group must be a

monomial one whose con®guration of nonzero components

takes one of 6! possibilities. Furthermore, the value of the

nonzero component is one of the following six ®gures: 1,

exp�i�=3�, exp�i2�=3�, ÿ1, exp�ÿi2�=3�, exp�ÿi�=3�. There-

fore, the group generated by these matrices is ®nite and its

order never exceeds 6! � 66 � 33 592 320.

With the help of computers, all the generators were multi-

plied by each other successively until no new element

appeared. Programs were written in Basic (F-Basic V6.0 L10

provided by Fujitsu) by the author and used mainly on a

personal computer GP6-333 provided by Gateway 2000. The

results are shown in Fig. 2. The supergroup G0 with 2799360

elements is our ®nal goal whose computation took about one

week and needed a data ®le of 17 Mbytes on a hard disk. Five

intermediate subgroups from G1 to G5 were found that

contain some of the ®ve foothold groups simultaneously. All

the six groups are determined as the minimal supergroup

produced by the generators of their corresponding subgroups.

Hence, for example, G1 and G2 are distinguished from each

other, for the former contains a generator lC6� of lGhex and the

latter does not, while the latter contains lbC31� of lGbcc2 and

the former does not.

Our ®rst aim to ®nd a ®nite supergroup of all the Bravais

lattices has been achieved. However, its use as a prototypic

group in the Landau theory of phase transitions needs further

laborious work. First of all, its irreducible representations

must be obtained but even their total number has not been

determined yet. No complete analysis of G0, however, is

necessary in particular cases. For example, phase transitions of

solid iron need a supergroup of only b.c.c. and f.c.c. so that G3

or G4 is suf®cient. Since their analyses are far simpler than

that of G0, we will be able to treat such transitions very soon.

The present results and methods will offer convenience to

crystallography. Above all, a ®nite supergroup simpli®es the

enumeration of its subgroups. For example, the 32 crystal-

lographic point groups have quite

similar group±subgroup relations

under the two most symmetrical

groups 6=mmm and m3m to those

under lGhex and lGsc in Fig. 2.

Groups 6=mmm and m3m are

homomorphic to lGhex and lGsc,

respectively, with two-to-one cor-

respondence. Each of the former

two groups can be constructed as

the direct product of the corre-

sponding latter one and the group Ci consisting of elements

�E; I�, where E is the identity element and I is

I �

ÿ1 0 0 0 0 0

0 ÿ1 0 0 0 0

0 0 ÿ1 0 0 0

0 0 0 ÿ1 0 0

0 0 0 0 ÿ1 0

0 0 0 0 0 ÿ1

0
BBBBBB@

1
CCCCCCA
: �23�

Thus, all the crystallographic point groups may be deduced as

the subgroups of G1, which has been found to contain the

above I. [It should be noticed that the present I is not a six-

dimensional version of inversion given in equation (5), but a

somewhat arti®cial one newly introduced.]

The most important usefulness of the present result lies in

the fact that many problems become solvable with algebraic

methods, which means more automatic methods than

geometric ones. An example may be the determination of the

reduced basis of lattices, that is the necessary and suf®cient

region to represent all the possible Bravais lattices in their

parameter space (Hosoya, 1986, 1990). Group theoretically,

the basis is a fundamental region of the representation space

for the in®nite supergroup of all the Bravais lattices. Since

most of the elements are nonlinear, no systematic method

is applicable to obtain it. Only a careful geometrical survey

could give the answer. Now all the elements of the super-

group have become linear, the region will be gained almost

automatically. Since the components of the elements are

complex in general, the obtained region will be also complex.

Then the region must be translated into the original repre-

sentation space, which is not so dif®cult a task.

The author expects that the present method is applicable to

higher-dimensional crystallography because there seems to be

no essential dif®culty in its expansion but much closer inves-

tigation will be necessary.
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Okinawa, 903-0213 Japan. Correspondence e-mail: hosoya@sci.u-ryukyu.ac.jp

There is a mistake in Fig. 2 of the paper by Hosoya [Acta Cryst.

(2000), A56, 259±263]. The line connecting G1 to G3 is wrong

and should connect G1 and G5 as shown in the following

®gure, which replaces Fig. 2 of the original paper.

The author is grateful to Dr Katsushi Waki for pointing out the error.
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Figure 2
Hierarchy of the newly obtained groups.


